Machine Learning Approaches to siRNA Efficacy Prediction
نویسنده
چکیده
OF THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Computer Science The University of New Mexico Albuquerque, New Mexico May, 2005 Machine Learning Approaches to siRNA Efficacy Prediction by Sahar Abubucker B.E., Madras University, 2000 M.S., Computer Science, University of New Mexico, 2005
منابع مشابه
Protein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches
DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملPredicting the efficacy of short oligonucleotides in antisense and RNAi experiments with boosted genetic programming
MOTIVATION Both small interfering RNAs (siRNAs) and antisense oligonucleotides can selectively block gene expression. Although the two methods rely on different cellular mechanisms, these methods share the common property that not all oligonucleotides (oligos) are equally effective. That is, if mRNA target sites are picked at random, many of the antisense or siRNA oligos will not be effective. ...
متن کاملSports Result Prediction Based on Machine Learning and Computational Intelligence Approaches: A Survey
In the current world, sports produce considerable statistical information about each player, team, games, and seasons. Traditional sports science believed science to be owned by experts, coaches, team managers, and analyzers. However, sports organizations have recently realized the abundant science available in their data and sought to take advantage of that science through the use of data mini...
متن کاملStock Price Prediction using Machine Learning and Swarm Intelligence
Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005